Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37816608

RESUMO

Anorectal malformations (ARMs) constitute a group of congenital defects of the gastrointestinal and urogenital systems. They affect males and females, with an estimated worldwide prevalence of 1 in 5000 live births. These malformations are clinically heterogeneous and can be part of a syndromic presentation (syndromic ARM) or as a nonsyndromic entity (nonsyndromic ARM). Despite the well-recognized heritability of nonsyndromic ARM, the genetic etiology in most patients is unknown. In this study, we describe three siblings with diverse congenital anomalies of the genitourinary system, anemia, delayed milestones, and skeletal anomalies. Genome sequencing identified a novel, paternally inherited heterozygous Caudal type Homeobox 2 (CDX2) variant (c.722A > G (p.Glu241Gly)), that was present in all three affected siblings. The variant identified in this family is absent from population databases and predicted to be damaging by most in silico pathogenicity tools. So far, only two other reports implicate variants in CDX2 with ARMs. Remarkably, the individuals described in these studies had similar clinical phenotypes and genetic alterations in CDX2 CDX2 encodes a transcription factor and is considered the master regulator of gastrointestinal development. This variant maps to the homeobox domain of the encoded protein, which is critical for interaction with DNA targets. Our finding provides a potential molecular diagnosis for this family's condition and supports the role of CDX2 in anorectal anomalies. It also highlights the clinical heterogeneity and variable penetrance of ARM predisposition variants, another well-documented phenomenon. Finally, it underscores the diagnostic utility of genomic profiling of ARMs to identify the genetic etiology of these defects.


Assuntos
Malformações Anorretais , Anus Imperfurado , Deformidades Congênitas dos Membros , Masculino , Feminino , Humanos , Canal Anal/anormalidades , Malformações Anorretais/genética , Anus Imperfurado/genética , Sistema Urogenital , Fator de Transcrição CDX2/genética
2.
Biomolecules ; 13(4)2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-37189363

RESUMO

Lowe Syndrome (LS) is a condition due to mutations in the OCRL1 gene, characterized by congenital cataracts, intellectual disability, and kidney malfunction. Unfortunately, patients succumb to renal failure after adolescence. This study is centered in investigating the biochemical and phenotypic impact of patient's OCRL1 variants (OCRL1VAR). Specifically, we tested the hypothesis that some OCRL1VAR are stabilized in a non-functional conformation by focusing on missense mutations affecting the phosphatase domain, but not changing residues involved in binding/catalysis. The pathogenic and conformational characteristics of the selected variants were evaluated in silico and our results revealed some OCRL1VAR to be benign, while others are pathogenic. Then we proceeded to monitor the enzymatic activity and function in kidney cells of the different OCRL1VAR. Based on their enzymatic activity and presence/absence of phenotypes, the variants segregated into two categories that also correlated with the severity of the condition they induce. Overall, these two groups mapped to opposite sides of the phosphatase domain. In summary, our findings highlight that not every mutation affecting the catalytic domain impairs OCRL1's enzymatic activity. Importantly, data support the inactive-conformation hypothesis. Finally, our results contribute to establishing the molecular and structural basis for the observed heterogeneity in severity/symptomatology displayed by patients.


Assuntos
Síndrome Oculocerebrorrenal , Humanos , Síndrome Oculocerebrorrenal/genética , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/química , Mutação , Mutação de Sentido Incorreto , Fenótipo
3.
Brain ; 146(1): 387-404, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35802027

RESUMO

Variants in the AUTS2 gene are associated with a broad spectrum of neurological conditions characterized by intellectual disability, microcephaly, and congenital brain malformations. Here, we use a human cerebral organoid model to investigate the pathophysiology of a heterozygous de novo missense AUTS2 variant identified in a patient with multiple neurological impairments including primary microcephaly and profound intellectual disability. Proband cerebral organoids exhibit reduced growth, deficits in neural progenitor cell (NPC) proliferation and disrupted NPC polarity within ventricular zone-like regions compared to control cerebral organoids. We used CRISPR-Cas9-mediated gene editing to correct this variant and demonstrate rescue of impaired organoid growth and NPC proliferative deficits. Single-cell RNA sequencing revealed a marked reduction of G1/S transition gene expression and alterations in WNT-ß-catenin signalling within proband NPCs, uncovering a novel role for AUTS2 in NPCs during human cortical development. Collectively, these results underscore the value of cerebral organoids to investigate molecular mechanisms underlying AUTS2 syndrome.


Assuntos
Transtorno Autístico , Deficiência Intelectual , Microcefalia , Células-Tronco Neurais , Humanos , Microcefalia/genética , Microcefalia/metabolismo , Deficiência Intelectual/genética , Organoides/metabolismo , Proteínas do Citoesqueleto , Fatores de Transcrição/metabolismo
4.
Front Genet ; 14: 1298574, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38304066

RESUMO

Background: Leigh syndrome is a rare, genetic, and severe mitochondrial disorder characterized by neuromuscular issues (ataxia, seizure, hypotonia, developmental delay, dystonia) and ocular abnormalities (nystagmus, atrophy, strabismus, ptosis). It is caused by pathogenic variants in either mitochondrial or nuclear DNA genes, with an estimated incidence rate of 1 per 40,000 live births. Case presentation: Herein, we present an infant male with nystagmus, hypotonia, and developmental delay who carried a clinical diagnosis of Leigh-like syndrome. Cerebral magnetic resonance imaging changes further supported the clinical evidence of an underlying mitochondrial disorder, but extensive diagnostic testing was negative. Trio exome sequencing under a research protocol uncovered compound-heterozygous missense variants in the HTRA2 gene (MIM: #606441): NM_013247.5:c.1037A>T:(p.Glu346Val) (maternal) and NM_013247.5:c.1172T>A:(p.Val391Glu) (paternal). Both variants are absent from public databases, making them extremely rare in the population. The maternal variant is adjacent to an exon-intron boundary and predicted to disrupt splicing, while the paternal variant alters a highly conserved amino acid and is predicted to be damaging by nearly all in silico tools. Biallelic variants in HTRA2 cause 3-methylglutaconic aciduria, type VIII (MGCA8), an extremely rare autosomal recessive disorder with fewer than ten families reported to date. Variant interpretation is challenging given the paucity of known disease-causing variants, and indeed we assess both paternal and maternal variants as Variants of Uncertain Significance under current American College of Medical Genetics guidelines. However, based on the inheritance pattern, suggestive evidence of pathogenicity, and significant clinical correlation with other reported MGCA8 patients, the clinical care team considers this a diagnostic result. Conclusion: Our findings ended the diagnostic odyssey for this family and provide further insights into the genetic and clinical spectrum of this critically under-studied disorder.

6.
Artigo em Inglês | MEDLINE | ID: mdl-35091508

RESUMO

Noncoding and synonymous coding variants that exert their effects via alternative splicing are increasingly recognized as an important category of disease-causing variants. In this report, we describe two siblings who presented with hypotonia, profound developmental delays, and seizures. Brain magnetic resonance imaging (MRI) in the proband at 5 yr showed diffuse cerebral and cerebellar white matter volume loss. Both siblings later developed ventilator-dependent respiratory insufficiency and scoliosis and are currently nonverbal and nonambulatory. Extensive molecular testing including oligo array and clinical exome sequencing was nondiagnostic. Research genome sequencing under an institutional review board (IRB)-approved study protocol revealed that both affected children were compound-heterozygous for variants in the SEPSECS gene. One variant was an initiator codon change (c.1A > T) that disrupted protein translation, consistent with the observation that most disease-causing variants are loss-of-function changes. The other variant was a coding change (c.846G > A) that was predicted to be synonymous but had been demonstrated to disrupt mRNA splicing in a minigene assay. The SEPSECS gene encodes O-phosphoseryl-tRNA(Sec) selenium transferase, an enzyme that participates in the biosynthesis and transport of selenoproteins in the body. Variations in SEPSECS cause autosomal recessive pontocerebellar hypoplasia type 2D (PCHT 2D; OMIM #613811), a neurodegenerative condition characterized by progressive cerebrocerebellar atrophy, microcephaly, and epileptic encephalopathy. The identification of biallelic pathogenic variants in this family-one of which was a synonymous change not identified by prior clinical testing-not only ended the diagnostic odyssey for this family but also highlights the contribution of occult pathogenic variants that may not be recognized by standard genetic testing methodologies.


Assuntos
Aminoacil-tRNA Sintetases , Doenças Cerebelares , Microcefalia , Aminoacil-tRNA Sintetases/genética , Doenças Cerebelares/genética , Criança , Humanos , Microcefalia/genética , Mutação , Irmãos
7.
Hum Mol Genet ; 30(3-4): 198-212, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33517444

RESUMO

Lowe Syndrome (LS) is a lethal genetic disorder caused by mutations in the OCRL1 gene which encodes the lipid 5' phosphatase Ocrl1. Patients exhibit a characteristic triad of symptoms including eye, brain and kidney abnormalities with renal failure as the most common cause of premature death. Over 200 OCRL1 mutations have been identified in LS, but their specific impact on cellular processes is unknown. Despite observations of heterogeneity in patient symptom severity, there is little understanding of the correlation between genotype and its impact on phenotype. Here, we show that different mutations had diverse effects on protein localization and on triggering LS cellular phenotypes. In addition, some mutations affecting specific domains imparted unique characteristics to the resulting mutated protein. We also propose that certain mutations conformationally affect the 5'-phosphatase domain of the protein, resulting in loss of enzymatic activity and causing common and specific phenotypes (a conformational disease scenario). This study is the first to show the differential effect of patient 5'-phosphatase mutations on cellular phenotypes and introduces a conformational disease component in LS. This work provides a framework that explains symptom heterogeneity and can help stratify patients as well as to produce a more accurate prognosis depending on the nature and location of the mutation within the OCRL1 gene.


Assuntos
Modelos Moleculares , Mutação , Síndrome Oculocerebrorrenal/enzimologia , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Linhagem Celular , Simulação por Computador , Células HEK293 , Humanos , Síndrome Oculocerebrorrenal/genética , Fenótipo , Conformação Proteica , Transporte Proteico
8.
Hum Mol Genet ; 29(10): 1700-1715, 2020 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-32391547

RESUMO

Lowe syndrome (LS) is an X-linked developmental disease characterized by cognitive deficiencies, bilateral congenital cataracts and renal dysfunction. Unfortunately, this disease leads to the early death of affected children often due to kidney failure. Although this condition was first described in the early 1950s and the affected gene (OCRL1) was identified in the early 1990s, its pathophysiological mechanism is not fully understood and there is no LS-specific cure available to patients. Here we report two important signaling pathways affected in LS patient cells. While RhoGTPase signaling abnormalities led to adhesion and spreading defects as compared to normal controls, PI3K/mTOR hyperactivation interfered with primary cilia assembly (scenario also observed in other ciliopathies with compromised kidney function). Importantly, we identified two FDA-approved drugs able to ameliorate these phenotypes. Specifically, statins mitigated adhesion and spreading abnormalities while rapamycin facilitated ciliogenesis in LS patient cells. However, no single drug was able to alleviate both phenotypes. Based on these and other observations, we speculate that Ocrl1 has dual, independent functions supporting proper RhoGTPase and PI3K/mTOR signaling. Therefore, this study suggest that Ocrl1-deficiency leads to signaling defects likely to require combinatorial drug treatment to suppress patient phenotypes and symptoms.


Assuntos
Doenças Genéticas Ligadas ao Cromossomo X/tratamento farmacológico , Síndrome Oculocerebrorrenal/tratamento farmacológico , Monoéster Fosfórico Hidrolases/genética , Serina-Treonina Quinases TOR/genética , Linhagem Celular , Cílios/efeitos dos fármacos , Cílios/genética , Cílios/patologia , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Síndrome Oculocerebrorrenal/genética , Síndrome Oculocerebrorrenal/patologia , Fenótipo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Proteínas rho de Ligação ao GTP/genética
9.
Int J Cancer ; 146(2): 449-460, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31584195

RESUMO

Bladder cancer is the sixth most common cancer in the United States, and it exhibits an alarming 70% recurrence rate. Thus, the development of more efficient antibladder cancer approaches is a high priority. Accordingly, this work provides the basis for a transformative anticancer strategy that takes advantage of the unique characteristics of the bladder. Unlike mucin-shielded normal bladder cells, cancer cells are exposed to the bladder lumen and overexpress EGFR. Therefore, we used an EGF-conjugated anthrax toxin that after targeting EGFR was internalized and triggered apoptosis in exposed bladder cancer cells. This unique agent presented advantages over other EGF-based technologies and other toxin-derivatives. In contrast to known agents, this EGF-toxin conjugate promoted its own uptake via receptor microclustering even in the presence of Her2 and induced cell death with a LC50 < 1 nM. Furthermore, our data showed that exposures as short as ≈3 min were enough to commit human (T24), mouse (MB49) and canine (primary) bladder cancer cells to apoptosis. Exposure of tumor-free mice and dogs with the agent resulted in no toxicity. In addition, the EGF-toxin was able to eliminate cells from human patient tumor samples. Importantly, the administration of EGF-toxin to dogs with spontaneous bladder cancer, who had failed or were not eligible for other therapies, resulted in ~30% average tumor reduction after one treatment cycle. Because of its in vitro and in vivo high efficiency, fast action (reducing treatment time from hours to minutes) and safety, we propose that this EGF-anthrax toxin conjugate provides the basis for new, transformative approaches against bladder cancer.


Assuntos
Antígenos de Bactérias/administração & dosagem , Antineoplásicos/administração & dosagem , Toxinas Bacterianas/administração & dosagem , Fator de Crescimento Epidérmico/administração & dosagem , Imunotoxinas/administração & dosagem , Neoplasias da Bexiga Urinária/tratamento farmacológico , Administração Intravesical , Animais , Antígenos de Bactérias/efeitos adversos , Antineoplásicos/efeitos adversos , Apoptose/efeitos dos fármacos , Toxinas Bacterianas/efeitos adversos , Linhagem Celular Tumoral , Cães , Ensaios de Seleção de Medicamentos Antitumorais , Fator de Crescimento Epidérmico/efeitos adversos , Feminino , Humanos , Imunotoxinas/efeitos adversos , Masculino , Camundongos , Cultura Primária de Células , Receptor ErbB-2/metabolismo , Resultado do Tratamento , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/veterinária
10.
PLoS One ; 13(2): e0192635, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29444177

RESUMO

Lowe syndrome is an X-linked condition characterized by congenital cataracts, neurological abnormalities and kidney malfunction. This lethal disease is caused by mutations in the OCRL1 gene, which encodes for the phosphatidylinositol 5-phosphatase Ocrl1. While in the past decade we witnessed substantial progress in the identification and characterization of LS patient cellular phenotypes, many of these studies have been performed in knocked-down cell lines or patient's cells from accessible cell types such as skin fibroblasts, and not from the organs affected. This is partially due to the limited accessibility of patient cells from eyes, brain and kidneys. Here we report the preparation of induced pluripotent stem cells (iPSCs) from patient skin fibroblasts and their reprogramming into kidney cells. These reprogrammed kidney cells displayed primary cilia assembly defects similar to those described previously in cell lines. Additionally, the transcription factor and cap mesenchyme marker Six2 was substantially retained in the Golgi complex and the functional nuclear-localized fraction was reduced. These results were confirmed using different batches of differentiated cells from different iPSC colonies and by the use of the human proximal tubule kidney cell line HK2. Indeed, OCRL1 KO led to both ciliogenesis defects and Six2 retention in the Golgi complex. In agreement with Six2's role in the suppression of ductal kidney lineages, cells from this pedigree were over-represented among patient kidney-reprogrammed cells. We speculate that this diminished efficacy to produce cap mesenchyme cells would cause LS patients to have difficulties in replenishing senescent or damaged cells derived from this lineage, particularly proximal tubule cells, leading to pathological scenarios such as tubular atrophy.


Assuntos
Diferenciação Celular , Cílios/patologia , Complexo de Golgi/metabolismo , Proteínas de Homeodomínio/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Rim/patologia , Proteínas do Tecido Nervoso/metabolismo , Síndrome Oculocerebrorrenal/patologia , Linhagem da Célula , Humanos
11.
Int Rev Cell Mol Biol ; 317: 331-47, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26008789

RESUMO

Lowe syndrome is a lethal X-linked genetic disorder characterized by congenital cataracts, mental retardation, and kidney dysfunction. It is caused by mutations in the OCRL1 (oculocerebrorenal syndrome of Lowe) gene that encodes a phosphatidylinositol 5-phosphatase (EC 3.1.3.36). The gene product Ocrl1 has been linked to a multitude of functions due to the central role played by phosphoinositides in signaling. Moreover, this protein also has the ability to bind Rho GTPases, the master regulators of the actin cytoskeleton, and to interact with elements of the vesicle trafficking machinery. It is currently under investigation how deficiencies in Ocrl1 affect these different processes and contribute to patient symptoms. This chapter outlines the known physiological roles of Ocrl1 which might be relevant to the mechanism underlying Lowe syndrome.


Assuntos
Cílios/fisiologia , Síndrome Oculocerebrorrenal/metabolismo , Síndrome Oculocerebrorrenal/patologia , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Humanos
12.
J Am Soc Nephrol ; 25(10): 2177-86, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24904085

RESUMO

Currently, no blood biomarker that specifically indicates injury to the proximal tubule of the kidney has been identified. Kidney injury molecule-1 (KIM-1) is highly upregulated in proximal tubular cells following kidney injury. The ectodomain of KIM-1 is shed into the lumen, and serves as a urinary biomarker of kidney injury. We report that shed KIM-1 also serves as a blood biomarker of kidney injury. Sensitive assays to measure plasma and serum KIM-1 in mice, rats, and humans were developed and validated in the current study. Plasma KIM-1 levels increased with increasing periods of ischemia (10, 20, or 30 minutes) in mice, as early as 3 hours after reperfusion; after unilateral ureteral obstruction (day 7) in mice; and after gentamicin treatment (50 or 200 mg/kg for 10 days) in rats. In humans, plasma KIM-1 levels were higher in patients with AKI than in healthy controls or post-cardiac surgery patients without AKI (area under the curve, 0.96). In patients undergoing cardiopulmonary bypass, plasma KIM-1 levels increased within 2 days after surgery only in patients who developed AKI (P<0.01). Blood KIM-1 levels were also elevated in patients with CKD of varous etiologies. In a cohort of patients with type 1 diabetes and proteinuria, serum KIM-1 level at baseline strongly predicted rate of eGFR loss and risk of ESRD during 5-15 years of follow-up, after adjustment for baseline urinary albumin-to-creatinine ratio, eGFR, and Hb1Ac. These results identify KIM-1 as a blood biomarker that specifically reflects acute and chronic kidney injury.


Assuntos
Moléculas de Adesão Celular/sangue , Glicoproteínas de Membrana/sangue , Proteínas de Membrana/sangue , Receptores Virais/sangue , Insuficiência Renal/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores/sangue , Estudos de Casos e Controles , Diabetes Mellitus Tipo 1/complicações , Nefropatias Diabéticas/sangue , Feminino , Receptor Celular 1 do Vírus da Hepatite A , Humanos , Masculino , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Ratos Sprague-Dawley , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...